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Stabilization of dark solitons in the cubic Ginzburg-Landau equation
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The existence and stability of exact continuous-wave and dark-soliton solutions to a system consisting of the
cubic complex Ginzburg-Landau~CGL! equation linearly coupled with a linear dissipative equation is studied.
We demonstrate the existence of vast regions in the system’s parameter space associated with stable dark-
soliton solutions, having the form of the Nozaki-Bekki envelope holes, in contrast to the case of the conven-
tional CGL equation, where they are unstable. In the case when the dark soliton is unstable, two different types
of instability are identified. The proposed stabilized model may be realized in terms of a dual-core nonlinear
optical fiber, with one core active and one passive.

PACS number~s!: 42.65.Sf, 42.65.Re, 42.65.Tg, 47.54.1r
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I. INTRODUCTION

It is commonly known that the complex cubic Ginzbur
Landau~CGL! equation plays an important role in patter
formation theory@1#. Various exact solitary-wave solution
to this equation are available@2#, two of which have the form
of stationary localized pulses: bright solitons~where we re-
alize the word ‘‘soliton’’ in a loose sense, without implyin
exact integrability! @3# and dark ones~also known as ‘‘enve-
lope holes’’!, which exist against a continuous-wave~cw!
background@4#.

Because of the presence of linear gain in the CGL eq
tion, the bright solitons of the CGL equation are unstable
their background is unstable. However, in the case of br
pulses, a stabilization scheme was proposed@5# and then
checked by direct numerical simulations@6#. The scheme is
based on linearly coupling the CGL equation to an ex
linear dissipative equation, and may find direct physical
plications in the context of nonlinear fiber optics, describi
a dual-core optical fiber, in which an active nonlinear co
carries the gain, a parallel-coupled passive linear core b
lossy. It has very recently been shown@7# that this stabilized
model provides for stable transmission of bright pulses
long-distance optical links withnormal dispersion.

Apart from the bright solitons, the dark solitons of th
CGL equation have also been a subject of interest: both
merical simulations@8,9# and analytical works@2,10# re-
vealed the existence and importance of various hole s
tions. In particular, the dark solitary waves discovered
Nozaki and Bekki~NB! @4# have attracted attention, althoug
they are known to be generally unstable@11# ~actually there
exists a very narrow parametric region where they are st
@12#!. This is due to the fact that they play a significa
dynamical role in a large part of the parameter space. In f
they are also important in the case when they are unsta
because in that case they may control the onset of spatio
poral chaos~turbulence! in the system@13#. Patterns similar
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to the NB envelope holes have been identified in vario
experiments with traveling-wave convection and coup
wakes@14#. Moreover, direct experimental evidence of th
existence of the NB dark solitary waves proper has rece
been reported in an experimental study of hydrotherm
waves in a laterally heated fluid layer@15#, as well as in
wakes@16# and in a chemical system@17#.

Generally, the search for a physically realistic system t
can support stable solitary hole~dark! solitons is of consid-
erable interest, both for physical applications, and also in
context of controlling spatiotemporal chaos@18#. In particu-
lar, the dynamics of dark solitons and the underlying
background can be studied in various perturbed version
the nonlinear Schro¨dinger ~NLS! equation, which resemble
the CGL equation~see, e.g.,@19# and references therein!. For
example, in a NLS equation, which incorporates linear g
and nonlinear absorption as small perturbations, the cw ba
ground can be stabilized, but the dark soliton is still unsta
@20#, in agreement with the instability of the NB dark solito
in the CGL equation. In this case, a stabilization techniq
for the dark soliton, based on the inclusion of nonlinear ga
has been proposed@21#. However, these approaches ha
been developed only for slightly perturbedunchirpeddark
solitons of the NLS equation, rather than for the exa
chirped NB dark solitary waves of the CGL equation.
more general approach to the stabilization of the dark s
ton, similar to the introduction of nonlinear gain, is to ad
quintic terms as a small perturbation@13#. In this connection,
it is relevant to mention that the pure CGL equation is rat
degenerate: the quiescent hole~dark-soliton! solution is a
member of a continuous solution family of moving gray so
tons~those with a dip that does not reach zero!. The analysis
developed in Ref.@13# has demonstrated that this family
structurally unstable, disappearing after the addition of
small quintic term, while a quiescent dark soliton may s
vive and become stable.

In this paper, we aim to develop another approach to
stabilization of NB dark solitons, based on the abov
mentioned scheme that was successfully used to stab
bright solitons of the CGL equation@5–7#. To this end, we
introduce a system of two linearly coupled equations,
:
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which the first one is the CGL equation, while the second
a simple linear dissipative equation. We display conditio
for the existence of explicitly found exact cw and NB dar
soliton solutions. We also study their stability, concludi
that they are stable in vast regions of the parameter spac
particular, as concerns the dark solitons, we demonstrat
means of direct simulations that infinitely long propagati
distances may be achieved. Thus, we present a stabiliza
scheme for nonperturbative dark solitary waves of the C
equation.

The paper is organized as follows. In Sec. II we formul
the model and present its exact cw and dark-soliton s
tions. In Secs. III and IV we study the stability of the cw a
dark solitons, respectively. The results obtained are sum
rized in Sec. V.

II. THE MODEL AND ITS EXACT CONTINUOUS-WAVE
AND DARK-SOLITARY-WAVE SOLUTIONS

We consider the following system of two linearly couple
equations, in which the first one is a CGL equation, while
second component is a simple linear dissipative equation

iuz1~ 1
2 D2 i !utt1uuu2u2 iu5Ky, ~1!

i yz1 iGy1k0y5Ku. ~2!

The model is formulated in terms of nonlinear fiber optic
where it applies to a dual-core nonlinear fiber coupler@5–7#.
Accordingly, u and y are the amplitudes of the electroma
netic waves in the active and passive cores, the evolu
variablez is the propagation distance, andt is the so-called
retarded time. The CGL Eq.~1! is normalized so that the
linear gain and dispersive loss coefficients are equal to 1
the corresponding effectscannotbe considered as small pe
turbations. The parameterD is the group-velocity dispersion
coefficient (D.0 in the anomalous-dispersion region, a
D,0 in the normal-dispersion one!, K is the coupling con-
stant,G is the loss coefficient in the linear core, andk0 is a
phase-velocity mismatch between the two cores.

The simplest nontrivial solution to Eqs.~1! and ~2! is a
one-parameter continuous-wave solution of the form

u~0!5u0 exp@ i ~k~0!z2v~0!t !#,
~3!

y~0!5u0K~2k~0!1k01 iG!21 exp@ i ~k~0!z2v~0!t !#,

where the amplitudeu0 , the wave numberk(0), and the fre-
quencyv (0) ~assumed to be real! are connected through th
equation

2k~0!2~ 1
2 D2 i !v~0!21u0

22 i 2~2k~0!1k01 iG!21K250.
~4!

Using the real and imaginary parts of Eq.~4!, we may obtain
the following inequalities:

1<G<K2, K2>G21@G21~2k~0!1k0!2#, ~5!

which follow from (2k(0)1k0)2>0. Notice that the equali-
ties G51 andG5K2, related to Eqs.~5!, define an area in
theK-G plane within which the existence of the cw solutio
is guaranteed.
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Additionally, there exists an exact analytical solution
the form of a stationary envelope hole, which resemble
chirped dark~black! soliton and follows the pattern of th
original envelope hole solution of the GL equation@4#:

u5u0

12exp~2ht !

@11exp~2ht !#11 im exp@ i ~kz2vt !#, ~6!

y5u0K~2k1k01 iG!21
12exp~2ht !

@11exp~2ht !#11 im

3exp@ i ~kz2vt !#. ~7!

Notice that the asymptotic amplitude~at utu→`) of the dark-
soliton solution coincides with that of the cw solution, an
thus the dark soliton may indeed be regarded as a local
dip in the cw background. The ‘‘chirp’’m in the exact solu-
tion ~6!, ~7! is

m52 3
4 D2A 9

16 D212, ~8!

while the remaining parameters, namely, the amplitudeu0 ,
the inverse widthh of the dark pulse, and the wave numb
k, are determined as follows. First,k is to be found from the
cubic equation,

m2k31~D13m22k0m2!k21@m2~G22K21k0
2!

22k0~D13m!]k1~D13m!@G~G2K2!1k0
2#

1k0m2K250. ~9!

Then,h is expressed in terms ofk:

h25
k~G21!1k0

2G~D13m!1m2~2k1k0!
. ~10!

Finally, the amplitudeu0 and the frequencyv can be found:

u0
2523mh2~11 1

4 D2!, ~11!

v52mh. ~12!

It is important to mention that the existence condition of t
dark-soliton solution is that the roots of Eq.~9! satisfy the
conditionh2.0.

III. STABILITY OF THE CONTINUOUS-WAVE
SOLUTION

Stability of the cw solution~3!, apart from being interest
ing by itself, is crucial for the stability of the dark soliton
because the latter cannot be stable unless its cw backgr
is stable. In order to investigate the stability, we consid
solutions to Eqs.~1! and ~2! of the form u5u(0)1u(1), y
5y (0)1y (1), where u(1) and y (1) are small perturbations
Then, we linearize the equations inu(1) andy (1), substitute
u(1)5u1 exp@i(k(0)z2v(0)t)#, y (1)5y1 exp@i(k(0)z2v(0)t)#, and
split the unknown functionsu1 and y1 into their real and
imaginary parts,u15u1

(r )1 iu1
( i ) andy15y1

(r )1 i y1
( i ) . Finally,

we look for solutions to the resulting equations in the fo
u1

(r ) ,u1
( i ) ,y1

(r ) ,y1
( i )}exp@i(Qz2Vt)#, whereQ and V are the

wave number and frequency of the perturbation. Thus
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arrive at the dispersion relation,

Q412i ~g2G!Q31~2ab2g22d22G214gG22K2!Q2

12i @G~ab1g2!2g~d21G2!1K2~G2g!#Q

1~ab1g2!~G21d2!1K2@K22d~a1b!22gG#50,

~13!

where

a[2k2 1
2 D~v~0!21V2!13u0

212iv~0!V, ~14!

b[a22u0 , ~15!

g[12v~0!22V22 iDv~0!V, ~16!

d[2k~0!1k0 . ~17!

Equation~13! is a quartic equation with complex coeffi
cients, which, in general, has four complex rootsQj ( j
51,2,3,4). The stability region, which is defined by the co
dition Im$Qj%.0 for 2`,V,1`, can be determined nu
merically by using the following procedure. As is seen fro
Eqs. ~14!–~17!, the coefficients of the quartic equation d
pend on the cw parametersu0 , k(0), andv (0), one of which
is free @recall that the cw solution~3! has one free param
eter#. This free parameter, however, can be determined
requiring that the dark soliton’s asymptotic amplitude co
cide with that of the cw background. Thus, we may find t
roots of the cubic equation~9! that satisfy the conditionh2

.0 @see Eq.~10!# to determine the wave numberk(0) and
then utilize Eqs.~10!–~12! to find the amplitudeu0 and fre-
quencyv (0). In way, the dependence of the coefficients
the quartic equation~13! on the parameters of the cw bac
ground is known. In addition, settingD527 andk052 ~we
will explain this choice below!, the coefficients of the quartic
equation~13! are all known, and thus we may find its roo
numerically, to determine the stability region.

In Fig. 1, the stability region thus found is displayed
theG-K parametric plane: it is a union of two regions, II an

FIG. 1. Regions of existence and stability of the cw solution a
stability region of the exact dark-soliton solution in theG-K param-
eter plane. The existence region of the cw, solution is confined
the dashed linesG51 andG5K2 @see Eq.~5!#. In the regions I and
IV, the cw solution is unstable. In the region II, the cw solution
stable, while the dark-soliton one is not. In the region III, both t
cw and dark-soliton solutions are stable.
-

y
-

f

III in Fig. 1, having a ‘‘boomerang’’ shape. Notice that th
left and bottom borders of the stability region tend asym
totically to the above-mentioned curvesG5K2 and G51,
respectively, which are the existence boundaries for the
solution @see Eq.~5!#. In the other regions in Fig. 1, i.e.,
and IV, the condition Im$Qj%.0 for 2`,V,1` is not
fulfilled and thus the cw background is unstable there.

It is also important how the parametersD and k0 affect
the stability of the cw solution. To this end, Fig. 2 shows t
area of the stability region from Fig. 1 as a function ofD, for
several values ofk0 (k051, 2, and 4!. We stress that the cw
is unstable ifk050, and thus nonzero values ofk0 are re-
quired to provide for the stability of the cw solution. On th
other hand, it is seen from Fig. 2 that the area of the stab
region depends almost linearly onk0 , and, as a function of
D, it has a maximum in the interval29,D,27 ~inside the
normal-dispersion region!. Also, it is important to notice tha
if D.Dcr'22.5 the stability region of the cw solution
ceases to exist and thus there is no chance to have a s
cw ~or dark-soliton! solution close to the zero-dispersio
point (D50) and in the anomalous-dispersion regime (D
.0).

According to these results, the choice of the aforem
tioned valuesD527 andk052 for the numerical simula-
tions to be displayed below is quite natural: a nonzero va
of the phase-velocity mismatch is needed to ensure the e
tence of the stability region, andD527 provides for a large
size of the stability domain. Note that it is reasonable
choose a relatively small value ofk0 , having regard to the
feasibility of the implementation of the stabilization schem
in a real experiment~using, e.g., delay lines with periodicall
placed short second-core segments that are parallel-cou
to the main core@7#!.

IV. STABILITY OF THE DARK SOLITONS

As mentioned in Sec. II, a necessary condition for t
existence of the dark soliton ish2.0 @see Eq.~10!#, for

d

y

FIG. 2. The domain of stability of the cw solution~correspond-
ing to the union of regions II and III of Fig. 1! as a function ofD,
for k051, 2, and 4. The area turns out to be an almost linear fu
tion of k0 ~at k050 the stability area does not exist!, and, as a
function of D, it has a maximum atD'27, which is moving
slightly deeper into the normal-dispersion region for larger valu
of k0 .
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every real root of the cubic equation~9!. Apparently, Eq.~9!
may have one or three real roots, leading to one or th
different dark solitons. They are characterized by differ
amplitudesu0 , which, in general, depend on the values
the parameters of the GL equations~1! and ~2!. A typical
example is shown in the bifurcation diagram of Fig. 3, whe
the amplitudesu0

2 of the dark solitons are plotted vs th
dispersion parameterD ~the other parameters areG53.9, K
52, k052, corresponding to region III in Fig. 1, where th
cw solution is stable!. As is seen, atD.22.5 (D,22.5)
the cubic equation has one~three! real roots, leading to a
single ~three! soliton~s!, whose stability is the issue.

Direct numerical simulations demonstrate that the d
soliton corresponding to the solid curve in Fig. 3 is stab
while the ones corresponding to the dashed curves are
stable. Notice that, according to this result, the stable d
soliton is that with thesmallestpossible amplitudeu0 .

In the simulations, the stability is realized as robust pro
gation of the soliton over infinitely long distance. This
what we have observed at every tested point (K,G) in the
shaded region~region III! in Fig. 1. This is illustrated by Fig.
4~a!, showing a typical example of a stable dark soliton: t
pulse propagates undistorted up toz52000 in the caseK
53, G52 ~the other parameters areD527 andk052, as
fixed above!.

If the coupling parameterK is decreased, so as to ent
region II in Fig. 1, the bifurcation diagram shown in Fig. 3
only slightly changed: the curves maintain their shape
they are both displaced, increasing the separation betw
them. Nevertheless, the behavior of the dark pulses is d
tically changed: although the more stable one is again
dark soliton corresponding to the smaller amplitudeu0 , the
propagation distance is not infinitely long in this case. This
demonstrated in Fig. 4~b!, where, as an example, the evol
tion of the dark pulse is shown forK52 andG52 ~the other
parameters are againD527 andk052). As is seen, at the
first stage, the dark soliton propagates undistorted, but th
collapses at a propagation distancez5200, in contrast to the
previous case~inside region III in Fig. 1!, where the propa-

FIG. 3. The amplitudeu0
2 of the dark-soliton solution, corre

sponding to the three roots of the cubic equation~9!, as a function
of the parameterD, for G53.9, K52, andk052. The solid line
~corresponding to a smaller amplitude! shows the stable dark soli
ton, while the dashed lines show unstable ones. Notice that s
dark pulses exist, provided thatD,Dcr'22.5.
e
t

f

e

k
,
n-

rk

-

e

t
en
s-
e

s

it

gation distance was infinitely long. Notice that no change
the shape of the underlying cw background is observed
compliance with the fact that the cw solution remains sta
in this region.

Finally, we consider the evolution of the dark solita
waves for values ofG andK belonging to region I or IV in
Fig. 1. As shown in Sec. III, the cw solution is unstable
these regions and, as a result, in this case the dark solito
expected to be subject to a background instability. This p
diction is confirmed by Fig. 4~c!, where the evolution of a
dark soliton is shown forK51.6, G52 ~which corresponds
to region I!, D527, andk052. As is seen, the dark puls
and the underlying cw background experience a ‘‘lamina
evolution initially. Nevertheless, after a very short propag
tion distance (z'30) the cw becomes modulationally un
stable and, as a result, the ‘‘laminar’’ propagation ends b
transition to an obviously turbulent state. Similar resu
were obtained for all the values ofG and K belonging to
region IV in Fig. 1.

le

FIG. 4. Contour plots of the evolution of dark solitary waves f
D527 andk052. ~a! A stable dark solitary wave forK53, G
52 ~region III in Fig. 1!, which propagates undistorted througho
the total simulated distancez52000. ~b! A dark solitary wave for
K52, G52 ~region II in Fig. 1!, which propagates undistorted u
to the distancez5200 and then collapses.~c! A dark solitary
wave forK51.6,G52 ~region I in Fig. 1! on top of an unstable cw
pedestal. A quick onset of a turbulent state is observed.
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V. CONCLUSIONS

In conclusion, we have found exact analytical continuo
wave and dark-soliton solutions in a system of two linea
coupled equations, the CGL equation and a linear dissipa
one. The dark solitons have the form of the Nozaki-Be
envelope holes of the conventional CGL equation. We h
found conditions for existence of the cw and dark-solit
solutions, and we have studied their stability in detail
means of numerical simulations. In contrast to the case of
single-component CGL equation, we have found vast regi
in the parameter space where stable cw states and dark
tons exist. In these regions, the dark solitons propagate
er
s

s,
-

ve
i
e

e
s

oli-
er

infinitely long distances without any distortions in the
shape. Additionally, we have found that, outside their sta
ity region, but inside the stability region of the underlying c
background, the dark solitons collapse. Outside the stab
region of the cw pedestal, the dark solitons are subjec
modulation instability.

These results clearly demonstrate that the nonperturba
dark solitary waves of the CGL equation can be stabiliz
The proposed stabilization scheme can be directly imp
mented in a dual-core nonlinear optical fiber, with one act
nonlinear core~where the evolution is described by the CG
equation! and one passive linear core~described by the linea
dissipative equation!.
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