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Stabilization of dark solitons in the cubic Ginzburg-Landau equation
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The existence and stability of exact continuous-wave and dark-soliton solutions to a system consisting of the
cubic complex Ginzburg-Landa€GL) equation linearly coupled with a linear dissipative equation is studied.
We demonstrate the existence of vast regions in the system’s parameter space associated with stable dark-
soliton solutions, having the form of the Nozaki-Bekki envelope holes, in contrast to the case of the conven-
tional CGL equation, where they are unstable. In the case when the dark soliton is unstable, two different types
of instability are identified. The proposed stabilized model may be realized in terms of a dual-core nonlinear
optical fiber, with one core active and one passive.

PACS numbgs): 42.65.5f, 42.65.Re, 42.65.Tg, 47.54.

[. INTRODUCTION to the NB envelope holes have been identified in various
experiments with traveling-wave convection and coupled
It is commonly known that the complex cubic Ginzburg- wakes[14]. Moreover, direct experimental evidence of the
Landau(CGL) equation plays an important role in pattern- existence of the NB dark solitary waves proper has recently
formation theory[1]. Various exact solitary-wave solutions been reported in an experimental study of hydrothermal
to this equation are availabg], two of which have the form waves in a laterally heated fluid lay€t5], as well as in
of stationary localized pulses: bright solitofshere we re- wakes[16] and in a chemical systefd7].
alize the word “soliton” in a loose sense, without implying  Generally, the search for a physically realistic system that
exact integrability [3] and dark onegalso known as “enve- can support stable solitary hofdark solitons is of consid-
lope holes’), which exist against a continuous-wayew) erable interest, both for physical applications, and also in the
background4]. context of controlling spatiotemporal chaldsg]. In particu-
Because of the presence of linear gain in the CGL equalar, the dynamics of dark solitons and the underlying cw
tion, the bright solitons of the CGL equation are unstable, adackground can be studied in various perturbed versions of
their background is unstable. However, in the case of brighthe nonlinear Schiinger (NLS) equation, which resemble
pulses, a stabilization scheme was propofeldand then the CGL equatiorisee, e.g.19] and references thereirFor
checked by direct numerical simulatiof]. The scheme is example, in a NLS equation, which incorporates linear gain
based on linearly coupling the CGL equation to an extraand nonlinear absorption as small perturbations, the cw back-
linear dissipative equation, and may find direct physical apground can be stabilized, but the dark soliton is still unstable
plications in the context of nonlinear fiber optics, describing[20], in agreement with the instability of the NB dark soliton
a dual-core optical fiber, in which an active nonlinear corein the CGL equation. In this case, a stabilization technique
carries the gain, a parallel-coupled passive linear core beinfpr the dark soliton, based on the inclusion of nonlinear gain,
lossy. It has very recently been shofif] that this stabilized has been proposel®1]. However, these approaches have
model provides for stable transmission of bright pulses inbeen developed only for slightly perturbeschirpeddark
long-distance optical links witmormal dispersion. solitons of the NLS equation, rather than for the exact
Apart from the bright solitons, the dark solitons of the chirped NB dark solitary waves of the CGL equation. A
CGL equation have also been a subject of interest: both nunore general approach to the stabilization of the dark soli-
merical simulations[8,9] and analytical workg2,10] re-  ton, similar to the introduction of nonlinear gain, is to add
vealed the existence and importance of various hole soluguintic terms as a small perturbatifi3]. In this connection,
tions. In particular, the dark solitary waves discovered byit is relevant to mention that the pure CGL equation is rather
Nozaki and BekkiNB) [4] have attracted attention, although degenerate: the quiescent hdlark-soliton solution is a
they are known to be generally unstabld] (actually there  member of a continuous solution family of moving gray soli-
exists a very narrow parametric region where they are stabl@ns(those with a dip that does not reach 2efthe analysis
[12]). This is due to the fact that they play a significant developed in Ref[13] has demonstrated that this family is
dynamical role in a large part of the parameter space. In facstructurally unstable disappearing after the addition of a
they are also important in the case when they are unstablemall quintic term, while a quiescent dark soliton may sur-
because in that case they may control the onset of spatiotemive and become stable.
poral chaodturbulence in the systeni13]. Patterns similar In this paper, we aim to develop another approach to the
stabilization of NB dark solitons, based on the above-
mentioned scheme that was successfully used to stabilize
* Author to whom correspondence should be addressed. FAXbright solitons of the CGL equatiofb—7]. To this end, we
+301-7257658. Email address: dfrantz@cc.uoa.gr introduce a system of two linearly coupled equations, in
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which the first one is the CGL equation, while the second is Additionally, there exists an exact analytical solution in
a simple linear dissipative equation. We display conditionghe form of a stationary envelope hole, which resembles a
for the existence of explicitly found exact cw and NB dark- chirped dark(black) soliton and follows the pattern of the
soliton solutions. We also study their stability, concludingoriginal envelope hole solution of the GL equatiaH:

that they are stable in vast regions of the parameter space. In

particular, as concerns the dark solitons, we demonstrate by U=u 1—exp(27t) exdi(kz— wt)] ©®)
means of direct simulations that infinitely long propagation 1+exp2yt)]* '~ '

distances may be achieved. Thus, we present a stabilization
scheme for nonperturbative dark solitary waves of the CGL

1—exp2nt
= UK (— K+ ko +iT) 1 p2mt)

equation. [1+exq2nt)]1+l,u
The paper is organized as follows. In Sec. Il we formulate .
the model and present its exact cw and dark-soliton solu- xXexdi(kz—wt)]. (7)

tions. In Secs. Il and IV we study the stability of the cw and
dark solitons, respectively. The results obtained are summ
rized in Sec. V.

Notice that the asymptotic amplitudat |t| — o) of the dark-
soliton solution coincides with that of the cw solution, and
thus the dark soliton may indeed be regarded as a localized
dip in the cw background. The “chirp’t in the exact solu-

II. THE MODEL AND ITS EXACT CONTINUOUS-WAVE . .
tion (6), (7) is

AND DARK-SOLITARY-WAVE SOLUTIONS

We consider the following system of two linearly coupled uw=—3D—\/%D?+2, (8
equations, in which the first one is a CGL equation, while the

second component is a simple linear dissipative equation: While the remaining parameters, namely, the amplitugle
the inverse widthy of the dark pulse, and the wave number

iu,+(3D—i)uy+|ulPu—iu=Ku, ) k, are determined as follows. Firgtjs to be found from the
cubic equation,

iv,+ilv+kov=Ku. (2 2K+ (D+ 3= 2kou D) K2+ [ (T2 = K2+ K2)
The model is formulated in terms of nonlinear fiber optics,
where it applies to a dual-core nonlinear fiber coupfer7]. —2ko(D+3u)]k+(D+3u)[I'(I'=K?)+k]
Accordingly, u and v are the amplitudes of the electromag- 2,9
netic waves in the active and passive cores, the evolution +kou"K"=0. ©)
variablez i_s the propagation disf[ance, anfii; the so-called Then, 7 is expressed in terms &
retarded time. The CGL EqJl) is normalized so that the
linear gain and dispersive loss coefficients are equal to 1 i.e., ) k(T=1)+kg
the corresponding effectannotbe considered as small per- n= “T(D+3u)+p2(—k+kg) (10
turbations. The parametér is the group-velocity dispersion
coefficient ©>0 in the anomalous-dispersion region, andFinally, the amplitudei, and the frequencw can be found:
D <0 in the normal-dispersion ojeK is the coupling con-

stant,I" is the loss coefficient in the linear core, akglis a uj=—3u7%(1+3D?), (11)
phase-velocity mismatch between the two cores.
The simplest nontrivial solution to Eqél) and (2) is a 0=—un. (12

one-parameter continuous-wave solution of the form o ) ) -
It is important to mention that the existence condition of the

u@=ugexdi(k®z—w©1)], dark-soliton solution is that the roots of E() satisfy the
(3  condition »*>0.
VO =uK(—k@+ko+il)  texdi(k@z—w@1)],
lIl. STABILITY OF THE CONTINUOUS-WAVE

where the amplitude,, the wave numbek(®), and the fre- SOLUTION
quencyw(®) (assumed to be reahre connected through the
equation Stability of the cw solution(3), apart from being interest-
ing by itself, is crucial for the stability of the dark soliton,
—kO= (D) ?+ud—i—(—k@+ko+iT') "1K?=0. because the latter cannot be stable unless its cw background

(4) is stable. In order to investigate the stability, we consider
_ o ~ solutions to Egs(1) and (2) of the formu=u@+u®), v
Using the real and imaginary parts of Ed), we may obtain  _ )1 (1) where u® and v¥) are small perturbations.
the following inequalities: Then, we linearize the equations ") and v»), substitute
1<T<K2, K2Z=T T2+ (—k©+ky)2], () u<1_>=ul ex;{i(k<°>z—w(°>t)1, vW=y, exq_i(k@)z—@(f’)t)], and
split the unknown functionsl; and v, into their real and
which follow from (—k(©@+kg)?=0. Notice that the equali- imaginary partsu; =u{”+iu{) andv,=2{"+i{’. Finally,
ties'=1 andI'=K?, related to Eqs(5), define an area in We look for solutions to the resulting equations in the form
the K-T" plane within which the existence of the cw solution u{” ,u{" ,1{"” ,1{) = exffi(Qz—Qt)], whereQ and Q are the
is guaranteed. wave number and frequency of the perturbation. Thus we
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FIG. 1. Regions of existence and stability of the cw solution and W00 ® ) ) o
stability region of the exact dark-soliton solution in theK param- -%o -15 -16) -5 0

eter plane. The existence region of the cw, solution is confined by
the dashed lineE =1 andl' =K? [see Eq(5)]. In the regions | and
IV, the cw solution is unstable. In the region II, the cw solution is
stable, while the dark-soliton one is not. In the region lll, both the
cw and dark-soliton solutions are stable.

FIG. 2. The domain of stability of the cw solutidnorrespond-
ing to the union of regions Il and Il of Fig.)las a function oD,
for ky=1, 2, and 4. The area turns out to be an almost linear func-
tion of ky (at ky=0 the stability area does not exisand, as a
function of D, it has a maximum aD~—7, which is moving
slightly deeper into the normal-dispersion region for larger values
of kg

arrive at the dispersion relation,

Q*+2i(y—T)Q3+(—aB— y?>— 6°—T'?+4yI'—2K?)Q?
) Il in Fig. 1, having a “boomerang” shape. Notice that the
+2i[T(aB+y*) = y(*+T?)+KX (T -)]1Q left and bottom borders of the stability regicz)n tend asymp-
2724 2 2re2_ _ _ totically to the above-mentioned curvés=K< andI'=1,
Hlapty ) (I ) +KAK = o(a+ f)=29T]=0, respectively, which are the existence boundaries for the cw
(13 solution[see Eq.(5)]. In the other regions in Fig. 1, i.e., |
and IV, the condition IfQ;}>0 for —<Q <+ is not
fulfilled and thus the cw background is unstable there.
It is also important how the parametdbsandk, affect
the stability of the cw solution. To this end, Fig. 2 shows the
area of the stability region from Fig. 1 as a functionXffor

where

a=—k—3iD(0 9%+ Q%) +3u3+2iw¥Q, (14

B=a—2Uo, (19 several values dfy (ko=1, 2, and 4. We stress that the cw
. is unstable ifky=0, and thus nonzero values k§ are re-
=1—02_(2_ (0) 0=V,
r=l-w Q°-iDw™1, (16) quired to provide for the stability of the cw solution. On the
o other hand, it is seen from Fig. 2 that the area of the stability

region depends almost linearly &g, and, as a function of
D, it has a maximum in the intervat 9<D < —7 (inside the
normaldispersion region Also, it is important to notice that
if D>D.~—2.5 the stability region of the cw solution
ceases to exist and thus there is no chance to have a stable
cw (or dark-soliton solution close to the zero-dispersion
point (D=0) and in the anomalous-dispersion regini& (
>0).

According to these results, the choice of the aforemen-
tioned valuedD = —7 andky=2 for the numerical simula-

Equation(13) is a quartic equation with complex coeffi-
cients, which, in general, has four complex ro@s (j
=1,2,3,4). The stability region, which is defined by the con-
dition Im{Q;}>0 for — <<+, can be determined nu-
merically by using the following procedure. As is seen from
Egs. (14)—(17), the coefficients of the quartic equation de-
pend on the cw parameteng, k®, andw(®, one of which
is free[recall that the cw solutiori3) has one free param-

eteﬂ.. Th|s free parameter,. ho,wever, can be det.ermlned. b)(ions to be displayed below is quite natural: a nonzero value
requiring that the dark soliton’s asymptotic amplitude coin-

cide with that of the cw background. Thus, we may find theof the phase-velocity mismatch is needed to ensure the exis-

£ th bi ) h . h ditiom? tence of the stability region, aridl= — 7 provides for a large
roots of the cubic equatlofg)_t at satisfy the con (')t'om size of the stability domain. Note that it is reasonable to
>0 [see Eq.(10)] to determine the wave numb&f®) and

- . i choose a relatively small value &f, having regard to the
then ““"Zg Egs(10—(12) to find the amplitudelo and fre-  toasipiity of the implementation of the stabilization scheme
quency»®. In way, the dependence of the coefficients of

) ) in a real experimenfusing, e.g., delay lines with periodically
the quartic equatioit13) on the parameters of the cw back- yiaced short second-core segments that are parallel-coupled
ground is known. In addition, settifg=—7 andk,=2 (W& {5 the main cord 7).
will explain this choice below the coefficients of the quartic
equation(13) are all known, and thus we may find its roots
numerically, to determine the stability region.

In Fig. 1, the stability region thus found is displayed in  As mentioned in Sec. Il, a necessary condition for the
theI'-K parametric plane: it is a union of two regions, Il and existence of the dark soliton i5>>0 [see Eq.(10)], for

IV. STABILITY OF THE DARK SOLITONS
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FIG. 3. The amplitudeu% of the dark-soliton solution, corre-
sponding to the three roots of the cubic equati®n as a function
of the parameteD, for I'=3.9, K=2, andky,=2. The solid line
(corresponding to a smaller amplitydehows the stable dark soli- 0 . Ll L) .
ton, while the dashed lines show unstable ones. Notice that stable -15 -10 -5 0 5 10 15
dark pulses exist, provided thBx<D~ —2.5.
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every real root of the cubic equati@8). Apparently, Eq(9)

may have one or three real roots, leading to one or three

different dark solitons. They are characterized by different

amplitudesug, which, in general, depend on the values of

the parameters of the GL equatioffs and (2). A typical

example is shown in the bifurcation diagram of Fig. 3, where

the amplitudesué of the dark solitons are plotted vs the

dispersion parametdd (the other parameters afe=3.9,K

=2, ko=2, corresponding to region Il in Fig. 1, where the ‘ kL

cw solution is stable As is seen, aD>—-2.5 (D<—2.5) (15 -0 5005 1015

the cubic equation has onéhree real roots, leading to a Normalized Time t

smgl_e (thred soll_tor(s),_ Whos_e stability is the issue. FIG. 4. Contour plots of the evolution of dark solitary waves for
Direct numerical simulations demonstrate that the darky _ _— - _ (@) A stable dark solitary wave foK=3, T

soliton corresponding to the solid curve in Fig. 3 is stable o '

. . '=2 (region lll in Fig. 1), which propagates undistorted throughout
while the ones corresponding to the dashed curves are u (reg g- 3 propad 9

: . . the total simulated distance= 2000. (b) A dark solitary wave for
stable. Notice that, according to this result, the stable dark _, —» (region Il in Fig. 1, which propagates undistorted up

soliton is that with thesmallestpossible amplitude, . to the distancez=200 and then collapses(c) A dark solitary

In the simulations, the stability is realized as robust propawave fork =1.6,T'=2 (region I in Fig. 2 on top of an unstable cw
gation of the soliton over infinitely long distance. This is pedestal. A quick onset of a turbulent state is observed.
what we have observed at every tested poktI{) in the
shaded regiofregion Ill) in Fig. 1. This is illustrated by Fig. gation distance was infinitely long. Notice that no change in
4(a), showing a typical example of a stable dark soliton: thethe shape of the underlying cw background is observed, in
pulse propagates undistorted up ze 2000 in the cas& compliance with the fact that the cw solution remains stable
=3, I'=2 (the other parameters al2=—7 andky=2, as in this region.
fixed above. Finally, we consider the evolution of the dark solitary

If the coupling parameteK is decreased, so as to enter waves for values of andK belonging to region | or IV in
region Il in Fig. 1, the bifurcation diagram shown in Fig. 3 is Fig. 1. As shown in Sec. Ill, the cw solution is unstable in
only slightly changed: the curves maintain their shape buthese regions and, as a result, in this case the dark soliton is
they are both displaced, increasing the separation betweeaxpected to be subject to a background instability. This pre-
them. Nevertheless, the behavior of the dark pulses is drasliction is confirmed by Fig. @), where the evolution of a
tically changed: although the more stable one is again théark soliton is shown foK=1.6,I'=2 (which corresponds
dark soliton corresponding to the smaller amplitugle the  to region ), D=—7, andky=2. As is seen, the dark pulse
propagation distance is not infinitely long in this case. This isand the underlying cw background experience a “laminar”
demonstrated in Fig.(8), where, as an example, the evolu- evolution initially. Nevertheless, after a very short propaga-
tion of the dark pulse is shown fé¢=2 andl'=2 (the other tion distance £~30) the cw becomes modulationally un-
parameters are agaih=—7 andko=2). As is seen, at the stable and, as a result, the “laminar” propagation ends by a
first stage, the dark soliton propagates undistorted, but then itansition to an obviously turbulent state. Similar results
collapses at a propagation distareze200, in contrast to the were obtained for all the values @f and K belonging to
previous caséinside region Il in Fig. 1, where the propa- region IV in Fig. 1.

50

25

Normalized
Distance z
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V. CONCLUSIONS infinitely long distances without any distortions in their

| lusi h found ¢ tical i shape. Additionally, we have found that, outside their stabil-
n conclusion, we have found exact analytical continuoUSy, ragion put inside the stability region of the underlying cw
wave and dark-soliton solutions in a system of two linearly

. ) ) 9 Ybackground, the dark solitons collapse. Outside the stability
coupled equations, the CGL equation and a linear d|SS|pat|vpegi0n of the cw pedestal, the dark solitons are subject to
one. The dark solitons have the form of the Nozaki-Bekkiygdulation instability.

envelope holes of the conventional CGL equation. We have These results clearly demonstrate that the nonperturbative
found conditions for existence of the cw and dark-SO'itondark So|itary waves of the CGL equation can be stabhilized.
solutions, and we have studied their stability in detail byThe proposed stabilization scheme can be directly imple-
means of numerical simulations. In contrast to the case of thmented in a dual-core nonlinear optical fiber, with one active
single-component CGL equation, we have found vast regionsonlinear corgwhere the evolution is described by the CGL
in the parameter space where stable cw states and dark sadiguation and one passive linear cof@escribed by the linear
tons exist. In these regions, the dark solitons propagate ovelissipative equation
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